
COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2011

Introduction To Operating Systems

Distributed Process Management – Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4600/sum2011

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 2 © Dr. Mark Llewellyn

Message

from branch A

to branch B

Message from

branch B to

branch A

One possible scenario – in this case reported account balance is correct

Example Scenarios For Bank Example

Process/Event Graph

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 3 © Dr. Mark Llewellyn

If at the time of balance determination, the balance from branch A is in transit

to branch B. In this case balance determined at 3:00 pm is incorrect.

All messages in transit must be examined at time of observation. The correct

total consists of balance at both branches and amount in any message in

transit.

Example Scenarios For Bank Example

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 4 © Dr. Mark Llewellyn

Example Scenarios For Bank Example

If the clocks at the two branches are not perfectly synchronized a problem

can arise. Suppose that a transfer message is initiated at branch A at local

time 3:01 pm. This message arrives at branch B at 2:59 local time. The

balance calculated at 3:00 pm will now show the incorrect amount of $200.

The amount is incorrectly counted twice.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 5 © Dr. Mark Llewellyn

Some Terms

• Channel

– Exists between two processes if they exchange messages.

• State

– Sequence of messages that have been sent and received along

channels incident with the process.

• Snapshot

– Records the state of a process.

• Global state

– The combined state of all processes.

• Distributed Snapshot

– A collection of snapshots, one for each process.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 6 © Dr. Mark Llewellyn

Global States and Distributed Snapshots

• The problem with a distributed system is that a true global state

cannot be determined because of the time lapse associated with

message transfer.

• We can attempt to define a global state by collecting snapshots

from all processes.

• For example, in the figure on the next page, at the time of taking

the snapshot, there is a message in transit on the <A,B> channel

(message 2), one in transit on the <A,C> channel (message 3),

and one in transit on the <C,A> channel (message 4). Messages 2

and 4 are properly represented, however, message 3 is not.

– The distributed snapshot indicates that message 3 has been received but not

yet sent!

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 7 © Dr. Mark Llewellyn

An Inconsistent Global State

Global snapshot indicates message

3 has not yet been sent, but in fact

has been received. Snapshot of

Process A shows no record of

sending message 3, snapshot of

Process C indicates receiving

message 3!

Global State

Snapshot process A: Message 2 sent

Snapshot process B: Message 1 sent

Snapshot process C: Message 1 received

Message 3 received

Message 4 sent

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 8 © Dr. Mark Llewellyn

Consistent Global States

• We need the distributed snapshot to record a consistent
global state.

• A global state is consistent if for every process state that
records the receipt of a message, the sending of that
message is recorded in the process state of the process
that sent the message.

• In the previous slide, the global state was inconsistent
because process C has recorded the receipt of message
3, but no process has a record of having sent message 3.

• In contrast, the process/event graph on the next page
illustrates a consistent global state.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 9 © Dr. Mark Llewellyn

A Consistent Global State

Global State

Snapshot process A: Message 2 sent

Snapshot process B: Message 1 sent

Snapshot process C: Message 1 received

Message 3 sent

Message 4 sent

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 10 © Dr. Mark Llewellyn

Distributed Snapshot Algorithm

• Several different algorithms which record a consistent global state have been

developed. We’ll examine a fairly popular one as follows:

• The algorithm assumes that messages are delivered in the order that they are

sent and no messages are lost. (A reliable transport protocol such as TCP

satisfies these requirements.)

• The algorithm uses a special control message, called a marker.

• Some process initiates the algorithm by recording its state and sending a

marker on all outgoing channels before any more messages are sent.

• Each process p then proceeds as follows. Upon the first receipt of the marker

(say from process q), receiving process p performs the following:

1. Process p records its local state.

2. Process p records the state of the incoming channel from q to p as empty.

3. Process p propagates the marker to all of its neighbors along all outgoing
channels.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 11 © Dr. Mark Llewellyn

Distributed Snapshot Algorithm (cont.)

• The previous three steps must be performed atomically; i.e., no

messages can be sent or received by process p until all three

steps are performed.

• At any time after recording its state, when process p receives a

marker from another incoming channel (say from process r), it

performs the following action:

1. Process p records the state of the channel from r to p as the sequence of

messages process p has received from process r from the time process p

recorded its local state Sp to the time it received the marker from process

r.

• The algorithm terminates at a process once the marker has been

received along every incoming channel.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 12 © Dr. Mark Llewellyn

Distributed Snapshot Algorithm (cont.)

• The following points can be made about this algorithm:

– Since any process may start the algorithm by sending out a marker, if

several nodes independently decided to record their state and send out

the marker, the algorithm will still work properly.

– The algorithm will terminate in a finite amount of time, if every message

is delivered in finite time.

– Since this is a distributed algorithm, each process is responsible for

recording its own state and the state of all incoming channels.

– Once all of the states have been recorded (the algorithm has terminated

at all processes), the consistent global state obtained by the algorithm

can be assembled by having every process send the state data that it has

recorded along every outgoing channel and having every process

forward the state data that it receives along every outgoing channel.

Alternatively, the initiating process could poll all processes to acquire

the global state.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 13 © Dr. Mark Llewellyn

Distributed Snapshot Algorithm - Example

Four processes are

each represented by a

node in the graph, and

each unidirectional

channel is represented

by an edge between the

two nodes with the

direction indicated by

the arrowhead.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 14 © Dr. Mark Llewellyn

Distributed Snapshot Algorithm - Example

Process 1

Outgoing channels

2 sent 1, 2, 3, 4, 5, 6

3 sent 1, 2, 3, 4, 5, 6

Incoming channels

Process 3

Outgoing channels

2 sent 1, 2, 3, 4, 5, 6, 7, 8

Incoming channels

1 received 1, 2, 3 stored 4, 5, 6

2 received 1, 2, 3 stored 4

4 received 1, 2, 3

Process 2

Outgoing channels

3 sent 1, 2, 3, 4

4 sent 1, 2, 3, 4

Incoming channels

1 received 1, 2, 3, 4 stored 5, 6

3 received 1, 2, 3, 4, 5, 6, 7, 8

Process 4

Outgoing channels

3 sent 1, 2, 3

Incoming channels

2 received 1, 2 stored 3, 4

Process 1 initiates

after sending 6

messages

Process 4 initiates

after sending 3

messages

Process 2 sent four messages on each of the two

outgoing channels prior to recording its states. Process

2 received 4 messages from process 1 before recording

its state, leaving messages 5 and 6 to be associated

with the channel.

Process 3 sent 8 messages on its outgoing channel prior to

recording its state. Process 3 received 3 messages from process

1 before recording its state, leaving messages 4, 5, and 6 to be

associated with the channel. Process 3 received 3 messages

from process 2 recording its state, leaving message 4 to be

associated with the channel. Process 3 received 3 messages

from process 4.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 15 © Dr. Mark Llewellyn

Distributed Snapshot Algorithm - Example

Process 1

Outgoing channels

2 sent 1, 2, 3, 4, 5, 6

3 sent 1, 2, 3, 4, 5, 6

Incoming channels

Process 3

Outgoing channels

2 sent 1, 2, 3, 4, 5, 6, 7, 8

Incoming channels

1 received 1, 2, 3 stored 4, 5, 6

2 received 1, 2, 3 stored 4

4 received 1, 2, 3

Process 2

Outgoing channels

3 sent 1, 2, 3, 4

4 sent 1, 2, 3, 4

Incoming channels

1 received 1, 2, 3, 4 stored 5, 6

3 received 1, 2, 3, 4, 5, 6, 7, 8

Process 4

Outgoing channels

3 sent 1, 2, 3

Incoming channels

2 received 1, 2 stored 3, 4

Snapshot consistency check: Have all messages recorded as sent been either received or recorded as in transit?

Process 1: sent 6 messages to process 2 – process 2 has recorded 4 messages with 2 messages in the channel.

Process 1: sent 6 messages to process 3 – process 3 has recorded 3 messages with 3 messages in the channel.

Process 2: sent 4 messages to process 3 – process 3 has recorded 3 messages with 1 message in the channel.

Process 2: sent 4 messages to process 4 – process 4 has recorded 2 messages with 2 messages in the channel.

Process 3: sent 8 messages to process 2 – process 2 has recorded 8 messages

Process 4: sent 3 messages to process 3 – process 3 has recorded 3 messages

All messages sent by all processes have either been received or are in the channel: snapshot is consistent.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 16 © Dr. Mark Llewellyn

Distributed Mutual Exclusion Concepts
• Whenever two or more processes compete for the use of system resources,

there is a need for a mechanism to enforce mutual exclusion.

• Any facility that is to provide support for mutual exclusion should meet the

following criteria:

– Mutual exclusion must be enforced: only one process at a time is allowed in its

critical section.

– A process that halts in its noncritical section must do so without interfering with

other processes.

– It must not be possible for a process requiring access to a critical section to be

delayed indefinitely: no deadlock or starvation.

– When no process is in a critical section, any process that requests entry to its

critical section must be permitted to enter without delay.

– No assumptions are made about relative process speeds or number of processors.

– A process remains inside its critical section for a finite time only.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 17 © Dr. Mark Llewellyn

Distributed Mutual Exclusion Concepts

RPj = Resource-controlling process in system j

Pji = User process I in system j

Rji = Resource I in system j

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 18 © Dr. Mark Llewellyn

Centralized Algorithm for Mutual Exclusion

• One node is designated as the control node.

• This node control access to all shared objects.

• Two key properties of the centralized algorithm are:

– Only the control node makes resource-allocation decision.

– All necessary information is concentrated in the control node, including the

identity and location of all resources and the allocation status of each

resource.

• The centralized approach is straightforward, and it is easy to see how

mutual exclusion is enforced: The control node will not grant a request

for a resource until that resource is released by the process currently

holding it.

• The centralized approach has severe drawbacks: (1) If the control node

fails, mutual exclusion breaks down. (2) every allocation/deallocation

requires an exchange of messages resulting in a bottleneck at the control

node.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 19 © Dr. Mark Llewellyn

Distributed Algorithm

• All nodes have equal amount of information, on average.

• Each node has only a partial picture of the total system

and must make decisions based on this information.

• All nodes bear equal responsibility for the final decision.

• All nodes expend equal effort, on average, in effecting a

final decision.

• Failure of a node, in general, does not result in a total

system collapse.

• There exists no system-wide common clock with which

to regulate the time of events.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 20 © Dr. Mark Llewellyn

Ordering of Events

• Events must be ordered to ensure mutual exclusion and avoid

deadlock.

• Clocks are not synchronized.

• Communication delays exist.

• Need to consistently say that one event occurs before another

event.

• Messages are sent when want to enter critical section and when

leaving critical section.

• Time-stamping

– Orders events on a distributed system

– System clock is not used

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 21 © Dr. Mark Llewellyn

Time-Stamping Algorithm

• Each system on the network maintains a counter which functions as a clock (Ci).

• Each site has a numerical identifier.

• When a message is received, the receiving system sets is counter to one more than the

maximum of its current value and the incoming time-stamp (counter).

• If two messages have the same time-stamp, they are ordered by the number of their

sites.

• Messages have the form: (m, Ti, i) where m = the message content, Ti = the timestamp

for the message set equal to Ci, and i = numerical identifier for the site.

• When a message is received, the receiving site j sets its clock to one more than the

maximum of its current value and the incoming timestamp: Cj = 1 + max[Cj, Ti].

• At each site, the ordering of event is determine by the following rules: For a message x

from site i and a message y from site j, x is said to precede y if one of the following

conditions holds: (1) if Ti < Tj or (2) Ti = Tj and i < j.

• For this method to work, each message is sent from one process to all other processes.

– Ensures all sites have same ordering of messages.

– For mutual exclusion and deadlock all processes must be aware of the situation.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 22 © Dr. Mark Llewellyn

Time-Stamping Algorithm - Example

At time 0, P1

transmits message

a and increments

its clock by 1

Message a received by P2 and P3 . Since

both local clocks have time 0, they are reset

to 2 = 1 + max[0,1].

P2 issues message x, first

incrementing its clock to 3.

Upon receipt of this message

both P1 and P3 both increment

their clocks to 4.

1

2

3

P1 issues message b

and P3 issues

message j at about

the same time, with

the same timestamp.

4

After all events have occurred,

the ordering of messages is

the same at all sites, namely

{a, x, b, j}

5

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 23 © Dr. Mark Llewellyn

Time-Stamping Algorithm – Another Example

Verify that the order of events (messages

received) at each site is {a, q}.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 24 © Dr. Mark Llewellyn

Deadlock in Resource Allocation

• Deadlock in resource allocation exists only if all

of the following conditions are met:

– Mutual exclusion

– Hold and wait

– No preemption

– Circular wait

• The aim of an algorithm that deals with deadlock

is either to prevent the formation of a circular

wait or to detect its actual or potential occurrence.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 25 © Dr. Mark Llewellyn

Phantom DeadlockP1 is halted

waiting for a

resource held

by P2. P1

holds RB

P1 is halted waiting

for a resource held

by P2. P3 holds RA

P3 releases RA

P3 requests RB

(a) If P3’s release of RA arrives before

its request for RB then all is OK

(b) If P3’s release of RA arrives after its

request for RB then deadlock may be

falsely detected

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 26 © Dr. Mark Llewellyn

Deadlock Prevention

• Circular-wait condition can be prevented by defining a

linear ordering of resource types.

• Hold-and-wait condition can be prevented by requiring

that a process request all of its required resource at one

time, and blocking the process until all requests can be

granted simultaneously.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 27 © Dr. Mark Llewellyn

Deadlock Avoidance

• Distributed deadlock avoidance is impractical

– Every node must keep track of the global state of the

system.

– The process of checking for a safe global state must

be mutually exclusive.

– Checking for safe states involves considerable

processing overhead for a distributed system with a

large number of processes and resources.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 28 © Dr. Mark Llewellyn

Distributed Deadlock Detection

• Each site only knows about its own resources.

– Deadlock may involve distributed resources

• Centralized control – one site is responsible for deadlock

detection.

• Hierarchical control – lowest node above the nodes

involved in deadlock.

• Distributed control – all processes cooperate in the

deadlock detection function.

COP 4600: Intro To OS (Distributed Process Management – Part 2) Page 29 © Dr. Mark Llewellyn

Summary of Distributed Deadlock Detection Strategies

Centralized Algorithms Hierarchical Algorithms Distributed Algorithms

Strengths Weaknesses Strengths Weaknesses Strengths Weaknesses

Algorithms are

conceptually

simple and easy

to implement.

Central site has

complete

information and

can optimally

resolve

deadlocks.

Considerable

communications

overhead; every

node must send

state

information to

the central node.

Vulnerable to

the failure of the

central node.

Not vulnerable

to single point

failure.

Deadlock

resolution

activity is

limited if most

potential

deadlocks are

relatively

localized.

May be difficult

to configure the

system so that

most potential

deadlocks are

localized;

otherwise there

may actually be

more overhead

than in a

distributed

approach.

Not vulnerable

to single point

failure.

No node is

swamped with

deadlock

detection

activity.

Deadlock

resolution is

cumbersome

because several

sites may detect

the same

deadlock and

may not be

aware of other

nodes involved

in the deadlock.

Algorithms are

difficult to

design because

of timing

considerations.

